شرحدرسالأعدادالمركبة(ComplexNumbers)
مقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهاعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة
تاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.تمتطويرهابشكلكاملفيالقرنالثامنعشرعلىيدعالمالرياضياتليونهاردأويلر.
خصائصالأعدادالمركبة
- الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
- الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
- القسمة:يتمضربالبسطوالمقامفيمرافقالمقام
التمثيلالهندسي
يمكنتمثيلالعددالمركبعلىالمستوىالديكارتي(مستوىالأعدادالمركبة)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
الصيغةالقطبية
يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاوية(الوسيطة)
تطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلتحليلالدوائرالمتناوبة
- فيمعالجةالإشاراتوالصور
- فيميكانيكاالكم
- فيأنظمةالتحكم
خاتمة
الأعدادالمركبةتلعبدوراًأساسياًفيالعديدمنفروعالرياضياتوالعلومالتطبيقية.فهمهايتطلبإدراكالعلاقةبينالجزءالحقيقيوالتخيلي،وكيفيةتمثيلهاوتحليلها.معالتقدمفيدراسةالرياضيات،تصبحالأعدادالمركبةأداةقويةلحلمشكلاتمعقدةفيمختلفالمجالاتالعلمية.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1
شرحدرسالأعدادالمركبةتاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.تمتطويرهابشكلكاملفيالقرنالثامنعشربواسطةعالمالرياضياتليونهاردأويلر.
شرحدرسالأعدادالمركبةخصائصالأعدادالمركبة
- الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
- الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
- القسمة:يتمضربالبسطوالمقامفيمرافقالمقام
التمثيلالهندسي
يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-هذاالتمثيليعرفباسم"مستوىالأعدادالمركبة"أو"مستوىأرجاند"
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاوية(الطور)
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتوالتحليلالطيفي
- فيميكانيكاالكموفيزياءالجسيمات
- فيالرسوماتالحاسوبيةوالتحريك
خاتمة
الأعدادالمركبةتلعبدوراًأساسياًفيالعديدمنفروعالرياضياتوالعلومالتطبيقية.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيلي،وكيفيةالتعاملمعهمفيالعملياتالحسابيةالمختلفة.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1
شرحدرسالأعدادالمركبةتاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.كانجيرولاموكاردانوأولمنأشارإليهافيكتابه"فنالعظيم"عام1545.
شرحدرسالأعدادالمركبةخصائصالأعدادالمركبة
- الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
- الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
- القسمة:يتمضربالبسطوالمقامفيمرافقالمقام
التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-كلعددمركبيقابلنقطةفيهذاالمستوى
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-rهوالمقياس(طولالمتجهمنالأصلللنقطة)-θهيالزاويةمعالمحورالحقيقي
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتوالتحليلالطيفي
- فيميكانيكاالكموفيزياءالجسيمات
- فيالرسوماتالحاسوبيةوالتحريك
خاتمة
الأعدادالمركبةتوسعمفهومنالنظامالأعدادوتوفرأدواتقويةلحلمشكلاترياضيةوعلميةمعقدة.فهمهاأساسيللعديدمنالتخصصاتالعلميةوالهندسيةالمتقدمة.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهاعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةالتيتساويالجذرالتربيعيللعدد-1(i²=-1)
شرحدرسالأعدادالمركبةخصائصالأعدادالمركبةالأساسية
الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمع/نطرحالأجزاءالحقيقيةوالأجزاءالتخيليةكلعلىحدةمثال:(3+2i)+(1+4i)=(3+1)+(2+4)i=4+6i
شرحدرسالأعدادالمركبةالضرب:نضربالأعدادالمركبةباستخدامخاصيةالتوزيعمعتذكرأنi²=-1مثال:(2+3i)×(1+2i)=2×1+2×2i+3i×1+3i×2i=2+4i+3i+6i²=2+7i+6(-1)=-4+7i
شرحدرسالأعدادالمركبةالقسمة:لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقاممثال:(3+4i)÷(1+2i)=[(3+4i)(1-2i)]÷[(1+2i)(1-2i)]
شرحدرسالأعدادالمركبة
التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالمركبحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)للعددالمركبويحسببالعلاقةr=√(a²+b²)-θهيالزاوية(الوسع)وتقاسعكساتجاهعقاربالساعةمنالمحورالحقيقيالموجب
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتوالتحليلالطيفي
- فيميكانيكاالكموفيزياءالموجات
- فيالرسوماتالحاسوبيةوالتحريك
خاتمة
الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتوفرأداةقويةلحلالمعادلاتالتيليسلهاحلفينظامالأعدادالحقيقية.فهمالأعدادالمركبةأساسيفيالعديدمنفروعالرياضياتوالعلوموالهندسة.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهاعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1
شرحدرسالأعدادالمركبةتاريخالأعدادالمركبة
ظهرتالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.كانجيرولاموكاردانوأولمنأشارإليهافيعملهعام1545.
شرحدرسالأعدادالمركبةخصائصالأعدادالمركبة
- الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
- الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
- القسمة:يتمضربالبسطوالمقامفيمرافقالمقام
التمثيلالهندسي
يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالصيغةالقطبية
يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاويةمعالمحورالحقيقي
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلتحليلالدوائرالمتناوبة
- فيمعالجةالإشاراتوالصور
- فيميكانيكاالكم
- فيأنظمةالتحكم
خاتمة
الأعدادالمركبةتوسعمفهومناللأعدادوتفتحآفاقاًجديدةفيالرياضياتوالعلومالتطبيقية.فهمهاأساسيللعديدمنالتخصصاتالعلميةوالهندسيةالمتقدمة.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1
شرحدرسالأعدادالمركبةتاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتيلايوجدلهاحلفيمجموعةالأعدادالحقيقية.كانجيرولاموكاردانوأولمنقدموصفًارسميًالهذهالأعدادفيعام1545.
شرحدرسالأعدادالمركبةخصائصالأعدادالمركبة
- الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
- الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
- القسمة:يتمضربالبسطوالمقامفيمرافقالمقام
- المرافق:مرافقالعددa+biهوa-bi
التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-كلعددمركبيقابلنقطةفيهذاالمستوى
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاويةمعالمحورالحقيقي
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتالرقمية
- فيميكانيكاالكم
- فيالرسوماتالحاسوبية
خاتمة
الأعدادالمركبةتوسعمفهومناللأعدادوتفتحآفاقًاجديدةفيالرياضياتوالعلومالتطبيقية.فهمهاجيدًايساعدفيحلمشكلاتمعقدةلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.
شرحدرسالأعدادالمركبةالأعدادالمركبةهيمفهومرياضيمتقدميمثلتوسيعًالمجموعةالأعدادالحقيقية.فيهذاالدرس،سنستكشفأساسياتالأعدادالمركبة،تمثيلها،خصائصها،وعملياتهاالأساسية.
شرحدرسالأعدادالمركبةتعريفالعددالمركب
العددالمركبهوعدديمكنالتعبيرعنهبالصيغة:z=a+biحيث:-aوbأعدادحقيقية-iهيالوحدةالتخيليةالتيتحققالمعادلةi²=-1
شرحدرسالأعدادالمركبةمكوناتالعددالمركب
- الجزءالحقيقي(RealPart):يمثلبالرمزRe(z)=a
- الجزءالتخيلي(ImaginaryPart):يمثلبالرمزIm(z)=b
التمثيلالهندسي
يمكنتمثيلالأعدادالمركبةعلىالمستوىالمركب(مستوىأرجاند)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالعملياتالأساسية
الجمع:(a+bi)+(c+di)=(a+c)+(b+d)i
شرحدرسالأعدادالمركبةالطرح:(a+bi)-(c+di)=(a-c)+(b-d)i
شرحدرسالأعدادالمركبةالضرب:(a+bi)×(c+di)=(ac-bd)+(ad+bc)i
شرحدرسالأعدادالمركبةالقسمة:للقسمة،نضربالبسطوالمقامفيمرافقالمقام
شرحدرسالأعدادالمركبة
المرافقالمركب
مرافقالعددالمركبz=a+biهو:z̄=a-bi
شرحدرسالأعدادالمركبةمعيارالعددالمركب
معيارالعددz=a+biهو:|z|=√(a²+b²)
شرحدرسالأعدادالمركبةالصيغةالقطبية
يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:z=r(cosθ+isinθ)حيث:-r=|z|(المعيار)-θهيالزاوية(الوسيطة)
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائية
- فيمعالجةالإشارات
- فيميكانيكاالكم
- فيتحليلالدوائرالكهربائية
- فيالرسوماتالحاسوبية
خاتمة
الأعدادالمركبةأداةرياضيةقويةتوسعنطاقحلالمعادلاتوتقدمطرقًاجديدةلتمثيلوتحليلالمشكلاتفيمجالاتعلميةوتقنيةمتنوعة.فهمالأعدادالمركبةأساسيللرياضياتالمتقدمةوالفيزياءوالهندسة.
شرحدرسالأعدادالمركبةمقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةالتيتساويالجذرالتربيعيللعدد-1(i²=-1)
شرحدرسالأعدادالمركبةتاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.تمتطويرهابشكلكاملفيالقرنالثامنعشرعلىيدعالمالرياضياتليونهاردأويلر.
شرحدرسالأعدادالمركبةالعملياتالأساسيةعلىالأعدادالمركبة
1.الجمعوالطرح
لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالأجزاءالتخيليةكلعلىحدة:(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i
شرحدرسالأعدادالمركبة2.الضرب
لضربعددينمركبين،نستخدمخاصيةالتوزيعونأخذفيالاعتبارأنi²=-1:(a+bi)(c+di)=ac+adi+bci+bdi²=(ac-bd)+(ad+bc)i
شرحدرسالأعدادالمركبة3.القسمة
لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام:(a+bi)/(c+di)=[(a+bi)(c-di)]/(c²+d²)
شرحدرسالأعدادالمركبةالتمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(مستوىأرجاند)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)للعددالمركب-θهيالزاوية(الوسيطة)التييصنعهامعالمحورالحقيقي
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:1.الهندسةالكهربائية(تحليلالدوائرالكهربائية)2.الفيزياء(ميكانيكاالكم)3.معالجةالإشارات4.الرسوماتالحاسوبية5.نظريةالتحكم
شرحدرسالأعدادالمركبةخاتمة
الأعدادالمركبةهيأداةرياضيةقويةتوسعمفهومالأعدادالحقيقيةوتسمحبحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمالأعدادالمركبةأساسيللعديدمنالتخصصاتالعلميةوالهندسيةالمتقدمة.
شرحدرسالأعدادالمركبةموعد الانتقالات الصيفية 2023 في السعوديةكل ما تحتاج معرفته
مع اقتراب فصل الصيف، يبدأ الجميع في المملكة العربية السعودية بالاستعداد لفترة الانتقالات الصيفية الت

ترتيب ريال مدريد في الدوري الاسباني 2025تحليل شامل لأداء الفريق الملكي
في موسم 2024-2025، يظهر ريال مدريد كواحد من أقوى المنافسين على لقب الدوري الإسباني، حيث يحتل مركزًا

ترتيب دوري الدرجة الأولى الإنجليزية (تشامبيونشيب) 20232024
دوري الدرجة الأولى الإنجليزية، المعروف باسم "تشامبيونشيب"، هو ثاني أقوى دوري كرة قدم في إنجلترا بعد

ترتيب الهلال في الدوري السعوديمسيرة التألق والهيمنة
يعد نادي الهلال أحد أبرز الأندية العربية على الإطلاق، حيث يحظى بسجل حافل من الإنجازات المحلية والقار

ملخص مباراة ريال مدريد ومانشستر سيتي اليوممواجهة أسطورية تنتهي بتعادل مثير
شهدت مباراة اليوم بين ريال مدريد ومانشستر سيتي مواجهة كروية أسطورية جمعت بين عملاقين من عمالقة كرة ا

ترتيب منتخب مصر تحت 23 سنةتحليل شامل لأداء الفراعنة الصغار
مقدمة عن منتخب مصر الأولمبي لكرة القدممنتخب مصر تحت 23 سنة، المعروف أيضًا باسم المنتخب الأولمبي المص

ترتيب دوري أبطال أوروبا للسيدات 2023تفاصيل البطولة والأندية المتألقة
شهدت بطولة دوري أبطال أوروبا للسيدات 2023 منافسات قوية ومثيرة بين أفضل الأندية الأوروبية في كرة القد

ترتيب هدافي الدوري المصري الممتازمن يتصدر القائمة هذا الموسم؟
مقدمة عن دوري المحترفين المصريالدوري المصري الممتاز هو أحد أبرز البطولات الكروية في القارة الأفريقية
